
Towards Safer Navigation: Reward Shaping with Prior Topographic Knowledge
in Habitat Simulator Point Goal Navigation

Jiajie Zhang, Linkai Zu, Jintian Hu, Tianyang Zhao
ShanghaiTech University

393 Huaxia Middle Road, Pudong, China
{zhangjj2023, zhlk2024, hujt2024, zhaoty2024}@shanghaitech.edu.cn

Abstract

Navigation is essential for intelligent agents in diverse en-
vironments. Traditional modular approaches are robust
but lack the adaptability of deep learning methods. Re-
inforcement learning (RL) agents show promise but often
struggle with safety and collision avoidance due to lim-
ited use of environmental maps. This paper addresses
these challenges by integrating topographic knowledge into
the RL framework through a novel reward shaping tech-
nique that uses distance information from a top-down map
to maintain safe distances from obstacles, enhancing path
safety without incorporating map data into agent observa-
tions. We introduce a new metric, path safety, to evaluate
navigation safety. Experiments using Habitat Simulator’s
PointGoal Navigation task demonstrate that RGBD agents
trained with reward shaping achieve significantly higher
path safety scores compared to those without it. These
improvements persist even without active reward shaping,
indicating that agents have internalized safe navigation
strategies. In contrast, RGB-only agents do not show simi-
lar enhancements, highlighting the importance of depth in-
formation. This work improves the reliability and safety of
RL-based navigation agents, advancing their applicability
to real-world dynamic and complex environments.

1. Introduction

Navigation stands as a cornerstone capability for intelli-
gent agents, underpinning their ability to interact effectively
within diverse environments. For humans, navigating from
point A to point B is often intuitive, especially when the
spatial relationship is clearly defined (e.g., ”B is 20 me-
ters north of A”). However, replicating this proficiency in
robotic systems poses significant challenges. Effective nav-
igation for robots entails the seamless integration of multi-
ple sub-tasks, including perceiving three-dimensional struc-
tures, estimating ego-motion, planning optimal routes, and

managing various forms of uncertainty[4]. The ability to
navigate safely and efficiently is crucial for the deploy-
ment of intelligent agents in real-world applications, rang-
ing from autonomous vehicles to service robots in dynamic
environments.

Traditionally, robotic navigation has relied on modular
pipelines that decompose the navigation problem into dis-
tinct sub-components such as mapping, localization, plan-
ning, and control [1, 2, 4]. Each module is meticulously
hand-engineered to address specific aspects of the naviga-
tion task, and these modules are subsequently integrated
by human designers to form comprehensive navigation sys-
tems. This classical approach has been extensively stud-
ied and successfully implemented in numerous robotic plat-
forms over the past decades. Despite their widespread use,
these traditional methods often fall short in terms of robust-
ness and accuracy, particularly when confronted with the
complexities and unpredictabilities inherent in real-world
scenarios.

The advent of deep learning has introduced a promis-
ing alternative to classical navigation methodologies. In-
spired by its transformative impact across various domains
of artificial intelligence, deep learning-based approaches
offer the potential to learn navigation strategies directly
from data, thereby minimizing the need for extensive hand-
engineering[14, 21, 22, 16, 24]. These data-driven meth-
ods can leverage underlying regularities within the data to
discover sophisticated strategies that may surpass manually
crafted rules. Notably, end-to-end training of deep convo-
lutional networks using reinforcement learning has demon-
strated significant advancements in navigation tasks within
simulated environments[21, 16, 24]. Such approaches en-
able the development of agents that can autonomously learn
to navigate without explicit decomposition into sub-tasks,
achieving state-of-the-art performance in various bench-
marks.

While learning-based navigation agents have demon-
strated promising advancements in virtual environments
such as AI Habitat[33], MIMOS[26], and Stanford Large-



Scale 3D Indoor Spaces (S3DIS)[12], transitioning these
agents to real-world applications remains fraught with chal-
lenges. Virtual training environments offer significant ad-
vantages, including reduced training costs and exception-
ally high simulation speeds—platforms like Meta’s Habi-
tat Simulator can process up to 10,000 frames per second,
effectively shifting the primary bottleneck to network opti-
mization[33]. Despite these benefits, a substantial perfor-
mance gap persists between simulated environments and
real-world settings. In practical applications, traditional
modular navigation stacks are preferred due to their estab-
lished robustness and reliability. In contrast, learning-based
agents frequently encounter issues such as collision-prone
global path planning and difficulties in managing unfore-
seen obstacles during both training and deployment phases.
These shortcomings not only undermine the reliability of
learning-based agents but also pose significant risks and
potential costs when deployed in real-world environments
without adequate safety measures.

A critical difference between reinforcement learning
(RL)-based navigation agents and classical navigation sys-
tems lies in their utilization of environmental maps. While
traditional methods rely on detailed maps to inform their
planning and control strategies, RL-based agents typically
operate without explicit map information, relying instead on
learned representations from sensory inputs. This discrep-
ancy contributes to the aforementioned safety and reliability
issues, as the absence of map awareness can lead to inade-
quate collision avoidance and suboptimal path planning.

In this paper, we address these challenges by integrating
prior topographic knowledge into the reinforcement learn-
ing framework to enhance the safety of navigation agents.
Specifically, we propose a reward shaping technique that
incorporates map-based information, thereby enabling the
agent to maintain safe distances from obstacles and plan
safer paths. Instead of directly feeding grid map images
into the agent’s policy network, our method calculates the
distance between the agent and the nearest obstacles at each
step and integrates this information into the reward func-
tion. This approach incentivizes the agent to prefer actions
that result in greater clearance from obstacles, thereby re-
ducing the likelihood of collisions. Additionally, we intro-
duce a novel metric, termed ”path safety,” which quanti-
fies the average distance between the agent’s trajectory and
environmental obstacles. This metric provides a more nu-
anced assessment of navigation safety, complementing tra-
ditional performance indicators and offering deeper insights
into the agent’s ability to navigate safely.

Through the incorporation of prior topographic knowl-
edge and the introduction of path safety metrics, our work
represents a significant step towards bridging the gap be-
tween simulated training environments and real-world de-
ployment of learning-based navigation agents. By enhanc-

ing the safety and reliability of RL-based agents, we move
closer to achieving autonomous systems capable of robustly
navigating complex, real-world environments.

2. Related Work

2.1. Traditional Navigation Stack

Navigation has been a fundamental area of research in
robotics for decades, encompassing various sub-tasks such
as mapping, localization, path planning, and motion con-
trol [8, 4]. Classical navigation pipelines typically inte-
grate these components to enable autonomous movement
in complex environments. Simultaneous Localization and
Mapping (SLAM) is a pivotal technique that combines map-
ping and localization, with most approaches utilizing met-
ric maps [13, 5]. Alternatively, topological mapping meth-
ods have also been explored to represent environments [10].
Path planning within these frameworks often relies on es-
tablished algorithms that ensure efficient and collision-free
routes, as extensively reviewed by LaValle [6][28]. These
traditional methods have been successfully implemented
across diverse robotic platforms, including wheeled [7],
legged [15], and aerial robots [9], demonstrating their ver-
satility and robustness in real-world applications.

2.2. End-to-End Learning for Navigation

The advent of deep learning has introduced end-to-end ap-
proaches to navigation, primarily through the application
of deep reinforcement learning (deep RL) [14, 17, 24, 25].
These methods leverage neural network architectures to
learn navigation policies directly from sensory inputs, by-
passing the need for explicit modular decomposition. Tech-
niques such as asynchronous training and curiosity-driven
exploration have been employed to enhance the learning ef-
ficiency and exploratory capabilities of agents [17, 25]. De-
spite their potential, many deep RL-based navigation mod-
els utilize generic architectures without integrating domain-
specific knowledge from classical navigation research. For
instance, the UNREAL framework employs a CNN-LSTM
architecture trained with auxiliary tasks to improve perfor-
mance [16]. Additionally, hybrid approaches have been de-
veloped where learning-based modules, such as deep net-
works for pose estimation, are incorporated into broader
navigation systems [19, 11, 23]. Advanced methods like the
Value Iteration Network (VIN) and the end-to-end mapper-
planner CMP represent state-of-the-art efforts to blend tra-
ditional planning with learning-based techniques [21, 18].
However, these approaches often demand extensive training
data and computational resources, limiting their scalability
and adaptability to novel environments.



2.3. Simulation Environments for Navigation Re-
search

Simulation platforms play a crucial role in the development
and evaluation of navigation algorithms, offering controlled
and scalable environments for experimentation. Several
simulators have been developed, each with unique strengths
and limitations. Gazebo has been a staple in the ROS
community due to its extensive community support and
a wide array of prebuilt assets, although it falls short in
terms of photorealism and simulation speed [3]. Unity,
combined with the MLAgents Toolkit, provides a versa-
tile game engine-based environment suitable for embodied
agents, yet it lacks native photorealistic rendering and com-
patibility with large-scale 3D datasets like Replica and Mat-
terport3D [28, 34, 20]. Isaac Sim offers high configurabil-
ity and photorealistic rendering but is not openly accessible
[32], while Sapien provides realistic physics-rich environ-
ments with limited task support [35].

In this context, the AI Habitat Simulator emerges as a
preferred choice for our study. Habitat Sim v2 is renowned
for its high-speed simulation and photorealistic rendering
capabilities, supporting datasets such as Replica and Mat-
terport3D [36]. The modular design of the Habitat frame-
work facilitates seamless integration with various 3D scene
datasets, making it an ideal platform for benchmarking and
comparison [33, 20, 30]. Specifically, we utilize the Mat-
terport3D dataset within the AI Habitat Simulator, as it is
the only publicly available dataset with reported navigation
results in Habitat, allowing us to benchmark our approach
against existing v1 agent performances [33].

2.4. Comparison of Classical and Learning-based
Navigation Methods

Recent studies have benchmarked classical and learned nav-
igation methods within complex 3D environments, high-
lighting the strengths and limitations of each approach
[31, 33]. While classical methods offer reliability and in-
terpretability through well-established algorithms, learned
agents demonstrate adaptability and potential for handling
diverse scenarios. However, learned agents often require
vast amounts of training data and exhibit limited general-
ization to unseen environments [26, 29]. Our work builds
on this comparative analysis by introducing reward shaping
techniques that incorporate prior topographic knowledge,
aiming to enhance the safety and efficiency of navigation
in realistic settings.

3. Method
3.1. Framework Overview
We build upon a standard reinforcement learning (RL)
framework for point-goal navigation implemented within
the Habitat Simulator environment. The agent is trained us-

Figure 1. reward shaping: add safety aware reward and exploration
reward into basic reward

ing the Proximal Policy Optimization (PPO) algorithm, and
we start from a conventional baseline reward function. At
each timestep t, the baseline reward rt is defined as:

rt =

{
s+ dt−1 − dt + λ if goal is reached
dt−1 − dt + λ otherwise

(1)

where dt is the agent’s distance to the goal at time t, s is
a success bonus, and λ is a small positive constant that en-
courages movement. This baseline reward focuses primar-
ily on guiding the agent toward the goal without explicitly
considering navigational safety.

In this study, we introduce a novel approach to en-
hance safety by integrating prior topographic knowledge
through reward shaping. Unlike methods that directly
incorporate static top-down maps into the observation
space—thereby deviating from the RL principle of learning
through environment-driven feedback—we leverage this
knowledge exclusively within the reward function. This
ensures the agent learns to navigate safely while preserv-
ing its ability to generalize to unseen environments. The
state space S remains consistent with standard PointGoal-
Nav tasks, and the action space A consists of discrete navi-
gation commands.

3.2. Reward Shaping with Prior Topographic
Knowledge

To promote safer navigation paths, we augment the baseline
reward rt with two additional shaping terms: an exploration
reward Rexploration and a safety-aware reward Rsafety. These
terms are layered on top of the original reward, giving the
total reward:

Rtotal(st) = rt + αRexploration(st) + βRsafety(st) (2)

Here, rt is the original baseline reward, and Rexploration,
Rsafety are additive shaping signals. The scaling factors α
and β balance the contribution of these additional rewards.



Figure 2. examples of the top-down blank maps that we used for
computing the safety reward during the training process

By integrating top-down map information into the re-
ward function rather than the agent’s observation space, we
adhere to the foundational RL paradigm. The agent still
learns from its interactions, but now benefits from a reward
signal that indirectly encodes environmental constraints and
desirable navigation patterns.

3.2.1. Dual Reward Mechanism

Our reward shaping strategy employs a dual reward mech-
anism: one component encourages exploration, while the
other promotes safe navigation.

Exploration Reward (Rexploration) The exploration re-
ward Rexploration is designed to counterbalance the possibil-
ity of overly cautious behavior that might arise from the
safety penalties. It encourages the agent to explore new re-
gions and avoid stagnation:

Rexploration = λ1∆dgoal + λ2I(st ∈ V)− λ3I(st ∈ H) (3)

Here, ∆dgoal measures progress toward the goal, V repre-
sents valid navigable positions, and H denotes historically
visited states. The indicator function I(·) ensures that re-
wards are context-sensitive. Coefficients λ1, λ2, and λ3

control the relative importance of progress, validity, and his-
torical uniqueness.

Safety Reward (Rsafety) The safety reward Rsafety encour-
ages the agent to maintain a safe distance from obstacles.
Using a distance transform of the environment’s top-down
map, we assign tiered rewards based on the agent’s proxim-
ity to obstacles. Let d(st) be the distance from the agent to
the nearest obstacle at state st:

Rsafety(d) =


−0.2 if d < 0.5 m
0.1 if 0.5 m ≤ d < 2.0 m
0.0 if d ≥ 2.0 m

(4)

This tiered structure provides a strong disincentive for
getting too close to obstacles, modest encouragement for
maintaining a reasonably safe margin, and neutrality when
the agent is sufficiently distant.

3.2.2. Obstacle Avoidance via Distance Transforms
To efficiently determine the agent’s proximity to obstacles,
we employ a distance transform-based algorithm. We pre-
compute the distance to the nearest obstacle for every nav-
igable point on the top-down map. This allows for O(1)
queries during training and ensures timely and accurate
feedback. The pixel-to-meters conversion aligns the dis-
tance thresholds with real-world scales, making the safety
reward more interpretable and effective.

3.3. Exploration Efficiency Optimization
To further refine the agent’s behavior, we incorporate multi-
ple strategies to enhance exploration efficiency without sac-
rificing safety. Effective movement rewards ensure that the
agent is incentivized to make meaningful progress toward
the goal, preventing it from abandoning promising routes
due to high avoidance penalties. Concurrently, invalid area
penalties impose negative rewards when the agent attempts
to enter unsafe or non-viable regions, thereby discouraging
such paths and maintaining strict adherence to safety con-
straints. Additionally, a historical position tracking mecha-
nism is implemented to avoid repetitive exploration of the
same areas, promoting movement towards unexplored and
potentially more promising regions. This comprehensive,
multi-layered approach effectively balances the necessity
for thorough exploration with stringent safety requirements,
resulting in more reliable and efficient navigation.

3.4. Integration with PPO Framework
Our reward shaping mechanism integrates seamlessly with
the PPO algorithm by computing the total reward Rtotal
at each timestep, which combines the baseline reward rt
with the shaping signals. This enhanced reward is uti-
lized for policy and value function updates. We maintain
independent reward statistics for the baseline and shap-
ing rewards, allowing separate assessment of exploration
and safety incentives. Additionally, the shaping rewards
are dynamically accumulated, enabling the reward function
to adapt across different training phases and continuously
guide the agent’s behavior. A dedicated real-time monitor-
ing system tracks key metrics, including the newly intro-
duced path safety measure, which quantifies the mini-
mum distance between the agent and obstacles over entire



trajectories, providing immediate feedback on navigational
safety. Furthermore, the reward scales α and β are ad-
justable during training to prioritize exploration or safety
as needed, offering the flexibility necessary to achieve the
desired balance in various environments or training phases.
By integrating these components into PPO, we preserve its
stability and optimization efficiency while substantially en-
hancing the agent’s navigation safety and exploration capa-
bilities.

In summary, our method maintains the foundational RL
structure while augmenting it with carefully designed re-
ward shaping terms grounded in prior topographic knowl-
edge. This design encourages safe and efficient navigation,
yielding policies that not only reach their goals but also do
so with significantly enhanced safety margins.

4. Experiments

In this section, we describe the experimental setup used
to evaluate our proposed method for enhancing naviga-
tion safety through reward shaping with prior topographic
knowledge in the Habitat Simulator’s Point Goal Naviga-
tion (PointGoalNav) task.

4.1. Task Definition
We adopt the PointGoal navigation task as outlined by An-
derson et al. [27], which serves as our primary experimental
framework. In this task, the agent is randomly positioned
and oriented within an environment and must navigate to
specified target coordinates relative to its initial position.
Notably, the agent does not have access to a ground-truth
map and must rely solely on its sensory inputs for naviga-
tion. Our approach aligns with the PointGoal Navigation
task definition by utilizing the true map information exclu-
sively for reward shaping, rather than incorporating it di-
rectly into the agent’s observations or outputs.

4.2. Agent Configuration
4.2.1. Embodiment and Action Space
The agent is modeled as a cylindrical entity with a diam-
eter of 0.2 meters and a height of 1.5 meters. The ac-
tion space comprises four discrete actions: turn left,
turn right, move forward, and stop. These actions
correspond to precise movements, where turning actions re-
sult in a rotation of 10 degrees, and the move forward
action propels the agent forward by 0.25 meters. The stop
action is used by the agent to indicate the completion of its
navigation task upon reaching the goal.

4.2.2. Sensory Inputs
The agent is equipped with a single RGB color vision sen-
sor positioned 1.5 meters above the base center and oriented
forward. This sensor captures color images at a resolution

Figure 3. Comparison of the paths taken by the RGBD agent with
and without reward shaping during testing. The left figure shows
the path without reward shaping, where the agent comes close to
obstacles and even collides with them. The right figure illustrates
the path taken by the agent when trained with a safety reward,
maintaining a safe distance from the walls.

of 256 × 256 pixels with a 90-degree field of view. Ad-
ditionally, an idealized depth sensor shares the same posi-
tion and orientation as the RGB sensor, matching its field
of view and resolution. Agents utilizing only the RGB sen-
sor are referred to as RGB agents, while those incorporating
both RGB and depth information are designated as RGBD
agents. Furthermore, all agents have access to an idealized
GPS and compass, providing precise location coordinates
and orientation relative to the goal.

4.3. Experimental Setup
4.3.1. Episode Specification
Each navigation episode begins with the agent placed at a
randomly selected navigable position and orientation within



the environment. The target location is also randomly cho-
sen, ensuring that a feasible navigable path exists from the
starting position to the goal. During an episode, the agent is
permitted to execute up to 500 actions. This action limit is
substantially higher than the number required by an optimal
agent to reach any goal, allowing ample opportunity for the
agent to explore and navigate effectively. After each action,
the agent receives sensory feedback from its active sensors
to inform subsequent decisions.

4.3.2. Training Procedure
The training process is distributed across four simulator
worker threads, each handling an equal subset of the train-
ing scenes. Each thread generates blocks of 500 training
episodes per scene, with the order of these blocks shuffled
to ensure diverse training experiences. Training proceeds
by iterating through shuffled blocks indefinitely until a cu-
mulative total of 5 million agent steps is reached across all
worker threads. This training duration is consistent with
previous studies [33]. The training time required to reach
5 million steps is approximately 10 GPU-hours for RGBD
agents and 9.5 GPU-hours for RGB agents.

4.4. Evaluation Metrics
4.4.1. Success Criteria
A navigation episode is deemed successful if the agent is-
sues a stop action within 0.2 meters of the target coordi-
nates, as measured by the geodesic distance along the short-
est navigable path from the agent’s final position to the goal.
If the agent fails to satisfy this condition within 500 actions,
the episode is considered unsuccessful.

4.4.2. Success Weighted by Path Length (SPL)
We employ the Success weighted by Path Length (SPL)
metric [27] to evaluate the agent’s performance. For a given
episode, let l denote the geodesic distance of the shortest
path from the starting position to the goal, and p represent
the distance traversed by the agent. The SPL is defined as:

SPL = S · l

max(p, l)

where S is a binary indicator of success (1 if the episode
is successful, 0 otherwise). This metric accounts for both
the success rate and the efficiency of the agent’s navigation
path, providing a balanced measure of performance.

4.4.3. Path Safety Metric
To quantitatively evaluate the safety of the agent’s naviga-
tion trajectory, we introduce a path safety metric that lever-
ages the distance transform of a top-down occupancy map.
Let τ = {p0, p1, . . . , pT } denote the agent’s path, where
each pt ∈ R3 is a 3D world coordinate (xt, yt, zt). The
top-down map M is a 2D grid, where M(u, v) indicates
whether the cell is navigable (M(u, v) = 0) or occupied by

Agent Success Rate SPL

gibson rgbd 0.230 0.262
gibson rgbd shaped 0.236 0.279
mp3d rgbd 0.343 0.341
mp3d rgbd shaped 0.353 0.339

Table 1. Average Success Rate and SPL for different Agents (av-
eraged over multiple seeds).

gibson
rgbd

gibson
rgbd

shaped

mp3d
rgbd

mp3d
rgbd

shaped
Agent Type

0

1

2

3

4

Pa
th

 S
af

et
y 

Sc
or

e

3.61

4.13
3.95

4.48

Path Safety Metrics Across Different Agents

Figure 4. Comparison of path safety scores between RGBD agents
with and without reward shaping. The figure shows that, with our
reward shaping, the paths taken by the RGBD agents maintain a
larger margin from obstacles. We trained the Gibson agent and
MP3D agent, then tested them on the MP3D dataset. The results
demonstrate that both RGBD agents with reward shaping perform
better in an unseen environment

an obstacle (M(u, v) = 1). We compute a distance trans-
form D(u, v) such that D(u, v) is the Euclidean distance
from cell (u, v) to the nearest obstacle.

Each 3D position pt on the path is projected onto the 2D
map coordinates (ut, vt) using a known mapping function:

(ut, vt) = f(xt, zt;M)

where f(·) translates world coordinates (xt, zt) into map
coordinates (ut, vt).

The path safety metric, denoted as path safety(τ),
is defined as the average distance from every projected path
position to the nearest obstacle:

path safety(τ) =
1

T + 1

T∑
t=0

D(ut, vt). (5)

If any path position falls outside the valid map range or
if no valid positions are found, the path safety defaults to
zero. This metric thus provides a meaningful measure of
how safely the agent navigates, as higher values indicate
that the agent consistently maintains a greater average dis-
tance from obstacles along its trajectory.



gibson
rgb

gibson
rgb

shaped

mp3d
rgb

mp3d
rgb

shaped
Agent Type

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pa
th

 S
af

et
y 

Sc
or

e

2.43 2.49

2.96 3.01

Path Safety Metrics Across Different Agents

Figure 5. Comparison of path safety scores between RGB agents
with and without reward shaping. A limitation we discovered is
that reward shaping did not significantly impact the path safety
performance of RGB-based agents during testing, particularly
when the agents encountered unseen environments.

5. Discussion
The experimental results indicate that reward shaping us-
ing prior topographic knowledge significantly enhances
the safety of agents’ navigation paths. Agents trained
with reward shaping consistently maintain greater distances
from obstacles, as evidenced by higher path safety
scores in Figure 4. This improvement is critical for real-
world robotic applications where collision avoidance is
paramount. Notably, during evaluation without active re-
ward shaping, agents still navigate safely, maintaining high
path safety scores. This demonstrates that agents have
learned to associate safe distances with high-value actions
through the interplay of state (depth sensor data), actions
(proximity adjustments), and shaped rewards. The align-
ment of the Proximal Policy Optimization (PPO) algorithm
with safety objectives ensures that agents prioritize safe
paths, reinforced by depth observations that enable effective
strategy execution. However, this benefit is primarily ob-
served in RGBD agents, as RGB agents do not exhibit signif-
icant improvements in path safety with reward shaping, es-
pecially in unseen environments (Figure 5). This limitation
highlights the essential role of depth information in effec-
tive reward shaping and suggests that RGB-only agents may
require additional mechanisms to achieve similar safety en-
hancements.

References
[1] Andrew J Davison and David W Murray. “Mobile

robot localisation using active vision”. In: Com-
puter Vision—ECCV’98: 5th European Conference
on Computer Vision Freiburg, Germany, June 2–
6, 1998 Proceedings, Volume II 5. Springer. 1998,
pp. 809–825.

[2] Guilherme N DeSouza and Avinash C Kak. “Vision
for mobile robot navigation: A survey”. In: IEEE
transactions on pattern analysis and machine intel-
ligence 24.2 (2002), pp. 237–267.

[3] Nathan Koenig and Andrew Howard. “Design
and use paradigms for gazebo, an open-source
multi-robot simulator”. In: 2004 IEEE/RSJ interna-
tional conference on intelligent robots and systems
(IROS)(IEEE Cat. No. 04CH37566). Vol. 3. Ieee.
2004, pp. 2149–2154.

[4] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
“Probabilistic robotics. 2005”. In: Massachusetts In-
stitute of Technology, USA (2005).

[5] Hugh Durrant-Whyte and Tim Bailey. “Simultaneous
localization and mapping: part I”. In: IEEE robotics
& automation magazine 13.2 (2006), pp. 99–110.

[6] Steven M LaValle. Planning algorithms. Cambridge
university press, 2006.

[7] Sebastian Thrun et al. “Stanley: The robot that won
the DARPA Grand Challenge”. In: Journal of field
Robotics 23.9 (2006), pp. 661–692.

[8] Francisco Bonin-Font, Alberto Ortiz, and Gabriel
Oliver. “Visual navigation for mobile robots: A sur-
vey”. In: Journal of intelligent and robotic systems
53 (2008), pp. 263–296.

[9] Michael Blösch et al. “Vision based MAV naviga-
tion in unknown and unstructured environments”.
In: 2010 IEEE International Conference on Robotics
and Automation. IEEE. 2010, pp. 21–28.

[10] Emilio Garcia-Fidalgo and Alberto Ortiz. “Vision-
based topological mapping and localization methods:
A survey”. In: Robotics and Autonomous Systems 64
(2015), pp. 1–20.

[11] Alex Kendall, Matthew Grimes, and Roberto Cipolla.
“Posenet: A convolutional network for real-time 6-
dof camera relocalization”. In: Proceedings of the
IEEE international conference on computer vision.
2015, pp. 2938–2946.

[12] Iro Armeni et al. “3d semantic parsing of large-scale
indoor spaces”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition.
2016, pp. 1534–1543.

[13] Cesar Cadena et al. “Past, present, and future of si-
multaneous localization and mapping: Toward the
robust-perception age”. In: IEEE Transactions on
robotics 32.6 (2016), pp. 1309–1332.

[14] Alexey Dosovitskiy and Vladlen Koltun. “Learning
to act by predicting the future”. In: arXiv preprint
arXiv:1611.01779 (2016).



[15] Marco Hutter et al. “Anymal-a highly mobile and dy-
namic quadrupedal robot”. In: 2016 IEEE/RSJ inter-
national conference on intelligent robots and systems
(IROS). IEEE. 2016, pp. 38–44.

[16] Max Jaderberg et al. “Reinforcement learning with
unsupervised auxiliary tasks”. In: arXiv preprint
arXiv:1611.05397 (2016).

[17] Volodymyr Mnih. “Asynchronous Methods for
Deep Reinforcement Learning”. In: arXiv preprint
arXiv:1602.01783 (2016).

[18] Aviv Tamar et al. “Value iteration networks”. In: Ad-
vances in neural information processing systems 29
(2016).

[19] Eric Brachmann et al. “Dsac-differentiable ransac for
camera localization”. In: Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. 2017, pp. 6684–6692.

[20] Angel Chang et al. “Matterport3d: Learning from
rgb-d data in indoor environments”. In: arXiv
preprint arXiv:1709.06158 (2017).

[21] Saurabh Gupta et al. “Cognitive mapping and plan-
ning for visual navigation”. In: Proceedings of the
IEEE conference on computer vision and pattern
recognition. 2017, pp. 2616–2625.

[22] Saurabh Gupta et al. “Unifying map and land-
mark based representations for visual navigation”.
In: arXiv preprint arXiv:1712.08125 (2017).

[23] Iaroslav Melekhov et al. “Relative camera pose esti-
mation using convolutional neural networks”. In: Ad-
vanced Concepts for Intelligent Vision Systems: 18th
International Conference, ACIVS 2017, Antwerp,
Belgium, September 18-21, 2017, Proceedings 18.
Springer. 2017, pp. 675–687.

[24] Emilio Parisotto and Ruslan Salakhutdinov. “Neu-
ral map: Structured memory for deep reinforce-
ment learning”. In: arXiv preprint arXiv:1702.08360
(2017).

[25] Deepak Pathak et al. “Curiosity-driven exploration
by self-supervised prediction”. In: International
conference on machine learning. PMLR. 2017,
pp. 2778–2787.

[26] Manolis Savva et al. “MINOS: Multimodal indoor
simulator for navigation in complex environments”.
In: arXiv preprint arXiv:1712.03931 (2017).

[27] Peter Anderson et al. “On evaluation of em-
bodied navigation agents”. In: arXiv preprint
arXiv:1807.06757 (2018).

[28] Arthur Juliani. “Unity: A general platform for intel-
ligent agents”. In: arXiv preprint arXiv:1809.02627
(2018).

[29] Yi Wu et al. “Building generalizable agents with a
realistic and rich 3d environment”. In: arXiv preprint
arXiv:1801.02209 (2018).

[30] Fei Xia et al. “Gibson env: Real-world perception for
embodied agents”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition.
2018, pp. 9068–9079.

[31] Dmytro Mishkin, Alexey Dosovitskiy, and Vladlen
Koltun. “Benchmarking classic and learned naviga-
tion in complex 3d environments”. In: arXiv preprint
arXiv:1901.10915 (2019).

[32] Filipe Figueredo Monteiro et al. “Simulating real
robots in virtual environments using NVIDIA’s Isaac
SDK”. In: Simpósio de Realidade Virtual e Aumen-
tada (SVR). SBC. 2019, pp. 47–48.

[33] Manolis Savva et al. “Habitat: A platform for embod-
ied ai research”. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2019,
pp. 9339–9347.

[34] Julian Straub et al. “The Replica dataset: A dig-
ital replica of indoor spaces”. In: arXiv preprint
arXiv:1906.05797 (2019).

[35] Fanbo Xiang et al. “Sapien: A simulated part-based
interactive environment”. In: Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition. 2020, pp. 11097–11107.

[36] Andrew Szot et al. “Habitat 2.0: Training home as-
sistants to rearrange their habitat”. In: Advances in
neural information processing systems 34 (2021),
pp. 251–266.


	Introduction
	Related Work
	Traditional Navigation Stack
	End-to-End Learning for Navigation
	Simulation Environments for Navigation Research
	Comparison of Classical and Learning-based Navigation Methods

	Method
	Framework Overview
	Reward Shaping with Prior Topographic Knowledge
	Dual Reward Mechanism
	Obstacle Avoidance via Distance Transforms

	Exploration Efficiency Optimization
	Integration with PPO Framework

	Experiments
	Task Definition
	Agent Configuration
	Embodiment and Action Space
	Sensory Inputs

	Experimental Setup
	Episode Specification
	Training Procedure

	Evaluation Metrics
	Success Criteria
	Success Weighted by Path Length (SPL)
	Path Safety Metric


	Discussion

